Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS One ; 17(1): e0261014, 2022.
Article in English | MEDLINE | ID: covidwho-1622333

ABSTRACT

High viral transmission in the COVID-19 pandemic has enabled SARS-CoV-2 to acquire new mutations that may impact genome sequencing methods. The ARTIC.v3 primer pool that amplifies short amplicons in a multiplex-PCR reaction is one of the most widely used methods for sequencing the SARS-CoV-2 genome. We observed that some genomic intervals are poorly captured with ARTIC primers. To improve the genomic coverage and variant detection across these intervals, we designed long amplicon primers and evaluated the performance of a short (ARTIC) plus long amplicon (MRL) sequencing approach. Sequencing assays were optimized on VR-1986D-ATCC RNA followed by sequencing of nasopharyngeal swab specimens from fifteen COVID-19 positive patients. ARTIC data covered 94.47% of the virus genome fraction in the positive control and patient samples. Variant analysis in the ARTIC data detected 217 mutations, including 209 single nucleotide variants (SNVs) and eight insertions & deletions. On the other hand, long-amplicon data detected 156 mutations, of which 80% were concordant with ARTIC data. Combined analysis of ARTIC + MRL data improved the genomic coverage to 97.03% and identified 214 high confidence mutations. The combined final set of 214 mutations included 203 SNVs, 8 deletions and 3 insertions. Analysis showed 26 SARS-CoV-2 lineage defining mutations including 4 known variants of concern K417N, E484K, N501Y, P618H in spike gene. Hybrid analysis identified 7 nonsynonymous and 5 synonymous mutations across the genome that were either ambiguous or not called in ARTIC data. For example, G172V mutation in the ORF3a protein and A2A mutation in Membrane protein were missed by the ARTIC assay. Thus, we show that while the short amplicon (ARTIC) assay provides good genomic coverage with high throughput, complementation of poorly captured intervals with long amplicon data can significantly improve SARS-CoV-2 genomic coverage and variant detection.


Subject(s)
Genome, Viral/genetics , Genomics/methods , SARS-CoV-2/genetics , Whole Genome Sequencing/methods , COVID-19/virology , Humans , RNA, Viral/genetics , Sequence Analysis/methods
2.
Microbiol Spectr ; 9(3): e0100321, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1593461

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 and has become a major global pathogen in an astonishingly short period of time. The emergence of SARS-CoV-2 has been notable due to its impacts on residents in long-term care facilities (LTCFs). LTCF residents tend to possess several risk factors for severe outcomes of SARS-CoV-2 infection, including advanced age and the presence of comorbidities. Indeed, residents of LTCFs represent approximately 40% of SARS-CoV-2 deaths in the United States. Few studies have focused on the prevalence and transmission dynamics of SARS-CoV-2 among LTCF staff during the early months of the pandemic, prior to mandated surveillance testing. To assess the prevalence and incidence of SARS-CoV-2 among LTCF staff, characterize the extent of asymptomatic infections, and investigate the genomic epidemiology of the virus within these settings, we sampled staff for 8 to 11 weeks at six LTCFs with nasopharyngeal swabs from March through June of 2020. We determined the presence and levels of viral RNA and infectious virus and sequenced 54 nearly complete genomes. Our data revealed that over 50% of infections were asymptomatic/mildly symptomatic and that there was a strongly significant relationship between viral RNA (vRNA) and infectious virus, prolonged infections, and persistent vRNA (4+ weeks) in a subset of individuals, and declining incidence over time. Our data suggest that asymptomatic SARS-CoV-2-infected LTCF staff contributed to virus persistence and transmission within the workplace during the early pandemic period. Genetic epidemiology data generated from samples collected during this period support that SARS-CoV-2 was commonly spread between staff within an LTCF and that multiple-introduction events were less common. IMPORTANCE Our work comprises unique data on the characteristics of SARS-CoV-2 dynamics among staff working at LTCFs in the early months of the SARS-CoV-2 pandemic prior to mandated staff surveillance testing. During this time period, LTCF residents were largely sheltering-in-place. Given that staff were able to leave and return daily and could therefore be a continued source of imported or exported infection, we performed weekly SARS-CoV-2 PCR on nasal swab samples collected from this population. There are limited data from the early months of the pandemic comprising longitudinal surveillance of staff at LTCFs. Our data reveal the surprisingly high level of asymptomatic/presymptomatic infections within this cohort during the early months of the pandemic and show genetic epidemiological analyses that add novel insights into both the origin and transmission of SARS-CoV-2 within LTCFs.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Hospitals , Long-Term Care , SARS-CoV-2/isolation & purification , Sequence Analysis/methods , Adolescent , Adult , Aged , Asymptomatic Infections/epidemiology , COVID-19/virology , Cohort Studies , Diagnostic Tests, Routine , Epidemiological Monitoring , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Pandemics , Phylogeny , Prevalence , RNA, Viral , SARS-CoV-2/classification , SARS-CoV-2/genetics , Specimen Handling , Young Adult
3.
Nat Microbiol ; 7(1): 108-119, 2022 01.
Article in English | MEDLINE | ID: covidwho-1574813

ABSTRACT

The global spread and continued evolution of SARS-CoV-2 has driven an unprecedented surge in viral genomic surveillance. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine laboratory processes and results. This challenge will increase with the expanding global production of sequences across a variety of laboratories for epidemiological and clinical interpretation, as well as for genomic surveillance of emerging diseases in future outbreaks. We present SDSI + AmpSeq, an approach that uses 96 synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination throughout the sequencing workflow. We apply SDSIs to the ARTIC Consortium's amplicon design, demonstrate their utility and efficiency in a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases and validate them across 6,676 diagnostic samples at multiple laboratories. We establish that SDSI + AmpSeq provides increased confidence in genomic data by detecting and correcting for relatively common, yet previously unobserved modes of error, including spillover and sample swaps, without impacting genome recovery.


Subject(s)
DNA Primers/standards , SARS-CoV-2/genetics , Sequence Analysis/standards , COVID-19/diagnosis , DNA Primers/chemical synthesis , Genome, Viral/genetics , Humans , Quality Control , RNA, Viral/genetics , Reproducibility of Results , Sequence Analysis/methods , Whole Genome Sequencing , Workflow
4.
J Med Virol ; 93(12): 6828-6832, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544316

ABSTRACT

A cluster of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections was found in a cargo ship under repair in Zhoushan, China. Twelve of 20 crew members were identified as SARS-CoV-2 positive. We analyzed four sequences and identified them all in the Delta branch emerging from India with 7-8 amino acid mutation sites in the spike protein.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , China , Genome, Viral/genetics , Humans , India , Phylogeny , Sequence Analysis/methods , Ships/methods , Spike Glycoprotein, Coronavirus/genetics
5.
Brief Bioinform ; 22(2): 924-935, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343628

ABSTRACT

In this paper, we present a toolset and related resources for rapid identification of viruses and microorganisms from short-read or long-read sequencing data. We present fastv as an ultra-fast tool to detect microbial sequences present in sequencing data, identify target microorganisms and visualize coverage of microbial genomes. This tool is based on the k-mer mapping and extension method. K-mer sets are generated by UniqueKMER, another tool provided in this toolset. UniqueKMER can generate complete sets of unique k-mers for each genome within a large set of viral or microbial genomes. For convenience, unique k-mers for microorganisms and common viruses that afflict humans have been generated and are provided with the tools. As a lightweight tool, fastv accepts FASTQ data as input and directly outputs the results in both HTML and JSON formats. Prior to the k-mer analysis, fastv automatically performs adapter trimming, quality pruning, base correction and other preprocessing to ensure the accuracy of k-mer analysis. Specifically, fastv provides built-in support for rapid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) identification and typing. Experimental results showed that fastv achieved 100% sensitivity and 100% specificity for detecting SARS-CoV-2 from sequencing data; and can distinguish SARS-CoV-2 from SARS, Middle East respiratory syndrome and other coronaviruses. This toolset is available at: https://github.com/OpenGene/fastv.


Subject(s)
SARS-CoV-2/isolation & purification , Sequence Analysis/methods , Viruses/isolation & purification , Algorithms , Genes, Viral , SARS-CoV-2/genetics , Viruses/genetics
6.
Mol Biol Rep ; 48(4): 3629-3635, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1202531

ABSTRACT

PCR Single-Strand Conformation Polymorphism is a method used to identify and detect mutations and is now well known for its many applications on living beings. This paper will discuss the experimental details, limitations and sensitivity of the PCR Single-Strand Conformation Polymorphism method in relation to all existing literature available to us until today. Genomic DNA extraction, PCR amplification and Single-Strand Conformation Polymorphism conditions (concentration of polyacrylamide slab gel electrophoresis, dissociation treatment of double- stranded DNA) and comparison with PCR Restriction Fragment Length Polymorphism are presented. Since its discovery in 1989, there have been many variations, innovations, and modifications of the method, which makes it very easy, safe, fast and for this reason widely applied in clinical diagnostic, forensic medicine, biochemical, veterinary, microbiological, food and environmental laboratories. One of the possible applications of the method is the diagnosis and identification of mutations in new strains of coronaviruses, because science needs more tools to tackle the problem of this pandemic. The PCR Single-Strand Conformation Polymorphism method can be applied in many cases provided that control samples are available and the required conditions of the method are achieved.


Subject(s)
Polymerase Chain Reaction/methods , Polymorphism, Single-Stranded Conformational , Animals , Coronavirus/classification , Coronavirus/genetics , Coronavirus/isolation & purification , Humans , Molecular Typing/methods , Pathology, Molecular/methods , Polymorphism, Restriction Fragment Length , Sequence Analysis/methods
7.
Comput Math Methods Med ; 2020: 8819942, 2020.
Article in English | MEDLINE | ID: covidwho-961173

ABSTRACT

The origin and evolution of SARS-CoV-2 has been an important issue in tackling COVID-19. Research on these topics would enhance our knowledge of this virus and help us develop vaccines or predict its paths of mutations. There are many theoretical and clinical researches in this area. In this article, we devise a structural metric which directly measures the structural differences between any two nucleotide sequences. In order to explore the mechanisms of how the evolution works, we associate the nucleotide sequences of SARS-CoV-2 and its related families with the degrees of randomness. Since the distances between randomly generated nucleotide sequences are very concentrated around a mean with low variance, they are qualified as good candidates for the fundamental reference. Such reference could then be applied to measure the randomness of other Coronaviridae sequences. Our findings show that the relative randomness ratios are very consistent and concentrated. This result indicates their randomness is very stable and predictable. The findings also reveal the evolutional behaviours between the Coronaviridae and all its subfamilies.


Subject(s)
COVID-19/virology , Computational Biology/methods , Genome, Viral , SARS-CoV-2/genetics , Sequence Analysis/methods , Algorithms , Betacoronavirus/genetics , Databases, Genetic , Humans , Models, Genetic , Mutation , Nucleotides
8.
BMC Genomics ; 21(1): 863, 2020 Dec 04.
Article in English | MEDLINE | ID: covidwho-958027

ABSTRACT

BACKGROUND: The global COVID-19 pandemic has led to an urgent need for scalable methods for clinical diagnostics and viral tracking. Next generation sequencing technologies have enabled large-scale genomic surveillance of SARS-CoV-2 as thousands of isolates are being sequenced around the world and deposited in public data repositories. A number of methods using both short- and long-read technologies are currently being applied for SARS-CoV-2 sequencing, including amplicon approaches, metagenomic methods, and sequence capture or enrichment methods. Given the small genome size, the ability to sequence SARS-CoV-2 at scale is limited by the cost and labor associated with making sequencing libraries. RESULTS: Here we describe a low-cost, streamlined, all amplicon-based method for sequencing SARS-CoV-2, which bypasses costly and time-consuming library preparation steps. We benchmark this tailed amplicon method against both the ARTIC amplicon protocol and sequence capture approaches and show that an optimized tailed amplicon approach achieves comparable amplicon balance, coverage metrics, and variant calls to the ARTIC v3 approach. CONCLUSIONS: The tailed amplicon method we describe represents a cost-effective and highly scalable method for SARS-CoV-2 sequencing.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/virology , Genome, Viral/genetics , SARS-CoV-2/genetics , Benchmarking , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing/standards , Humans , Molecular Epidemiology , Mutation , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis/methods , Sequence Analysis/standards
9.
Biomed J ; 43(5): 438-450, 2020 10.
Article in English | MEDLINE | ID: covidwho-741060

ABSTRACT

BACKGROUND: COVID-19 (Coronavirus Disease-19), a disease caused by the SARS-CoV-2 virus, has been declared as a pandemic by the World Health Organization on March 11, 2020. Over 15 million people have already been affected worldwide by COVID-19, resulting in more than 0.6 million deaths. Protein-protein interactions (PPIs) play a key role in the cellular process of SARS-CoV-2 virus infection in the human body. Recently a study has reported some SARS-CoV-2 proteins that interact with several human proteins while many potential interactions remain to be identified. METHOD: In this article, various machine learning models are built to predict the PPIs between the virus and human proteins that are further validated using biological experiments. The classification models are prepared based on different sequence-based features of human proteins like amino acid composition, pseudo amino acid composition, and conjoint triad. RESULT: We have built an ensemble voting classifier using SVMRadial, SVMPolynomial, and Random Forest technique that gives a greater accuracy, precision, specificity, recall, and F1 score compared to all other models used in the work. A total of 1326 potential human target proteins of SARS-CoV-2 have been predicted by the proposed ensemble model and validated using gene ontology and KEGG pathway enrichment analysis. Several repurposable drugs targeting the predicted interactions are also reported. CONCLUSION: This study may encourage the identification of potential targets for more effective anti-COVID drug discovery.


Subject(s)
COVID-19/virology , Host Microbial Interactions , Machine Learning , Proteins/metabolism , COVID-19/diagnosis , Humans , SARS-CoV-2 , Sequence Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL